
Damage Detection and Classi�cation in

Wind Turbine's Blades using

Automated Visual Inspection

Tiago Miguel da Cunha Cesteiro

tiago.cesteiro@tecnico.ulisboa.pt

Instituto Superior Técnico, Universidade de Lisboa, Portugal

July 2020

Abstract

With the rising of awareness regarding global warming, renewable energy sources have been increasingly the focus
of the energy industry. According to [11], in 2017, wind power generated the second most electricity amount (7.7%),
from all renewable energies (the �rst one was hydropower with 85.2%). Due to wind erosion and others factors, wind
turbine blades are components highly a�ected during work. In that sense, periodic inspections should be performed
to prolong their lifetime. Visual inspections are performed by trained inspectors, however an automatic toll can
be implemented to cut down the inspection time and total cost, while also guaranteeing overall coherence in the
damages identi�ed. Knowing there are still no automatic solutions for that purpose, this work aims to explore tools
for automatic visual damage detection and classi�cation in blades photographies, which were collected from wind
turbines farms. For the purpose, two approaches were considered. In a �rst attempt, an algorithm was developed,
using only classic computer vision methods, along with point clustering techniques. Knowing the limitations of this
approach, deep neural networks were explored as second option. The purpose of the �rst approach is to establishing
a performance reference for the neural networks. In the end, the approaches were compared for the same set of
images, con�rming the limitations of the �rst approach, as well as the potential of deep neural networks to adapt to
non-trivial tasks, achieving good generalization and robustness.

Keywords: wind turbines, automated visual inspections, damages detection and classi�cation, computer vision,
deep learning

1 Introduction

Wind power was one of the primordial energy source
to be used by humans. Since ancient times, various cul-
tures and civilizations were able to convert wind energy
into mechanical power. However, wind power was eventu-
ally replaced by steam and internal combustion engines,
that utilize alternative energy sources, such as coil, fos-
sil fuel, oil, natural gas and nuclear energy. Only a few
decades ago, the advance of technology and the increas-
ing of awareness about global warming and environmental
pollution has led the energy industry to rely, more and
more, on renewable energy sources. Moreover, the costs
reduction in this sector made it a reliable and competi-
tive energy source. In this manner, wind turbines have
become a more common technology for electricity gener-
ation. Due to highly exposure to wind loads, the rotor
blades are excessively stressed parts, with high potential
to develop damages. Thus, blades are a crucial component
to observe during design and operational time of wind tur-
bines.

1.1 Rotor Blades Inspections

To extend rotor blades lifetime, a good maintenance
should be conducted by wind farm owners. Nowadays,
blade inspections have a range of di�erent techniques,
being all of them non-destructive testing. According to

[4], this range contains visual inspections, infra-red ther-
mography, ultrasonic and tap testing, digital radiography,
acoustic emission, vibration analysis and microwave or ter-
ahertz techniques.

Visual inspections is the most commonly used tech-
nique, where an expert is attached to ropes and hanged at
blades height for a closer look. Some disadvantages arise
from this. For instance, the inspector must have a special
training and be willing to put his/her life at risk. Also, in-
specting all the blades length is time consuming, even for
trained experts, and rope access may be di�cult in some
cases. To overcome such obstacles, the process could be
managed with automated visual inspections.

1.2 Automated Visual inspections

Automated Visual inspections (AVI) are accomplished
by means of computer vision processes. This �eld focuses
on methods to transfer human vision perception into ma-
chines. By combining image processing with other tools,
one can develop a computer vision algorithm for a speci�c
AVI case.

AVI started to be used globally in the manufacturing
sector in the beginning of 1980s. By guaranteeing con-
trolled image conditions, such as illuminance, scale, rota-
tion and translation, computer vision methods showed to

1



be reliable for real implementations. Since then, AVI ex-
panded to many industries, such as, the automobile, pack-
ing, textile and others.

1.3 Problem Formulation

Having all this said, this work will investigate whether
AVI is feasible to be implemented in blade inspections of
wind turbines. Using a dataset of blades photographs con-
taining several damages, as well as a .json �le with anno-
tations of detections made by blade inspectors.
In an attempt to unify all 153 labels present in the

dataset, a deep observation of the photos was performed,
searching for labels with similar damage type. After the
aggregation of similar labels and exclusion of irrelevant
ones, damages with less than 150 occurrences were ex-
cluded. Furthermore, as the data were analysed, some of
the bounding boxes showed to be imprecise or the damage
type was incorrect, leading for the need to relabel all the
dataset. The �nal dataset, with the correct and consistent
labels is described in table 1.

Damage type Occurrences Images

Erosion 3948 2475
Peeling 1366 1021
Crack 890 507
Fungi 949 675
Lightning Strike 460 391
Lightning Receptor
Damaged

744 743

Total 8357 5750

Table 1: Number of occurrences of each damage in new
dataset

1.4 Solutions Proposed

This work explores two di�erent solutions. The �rst
one gives use to classical computer vision methods. De-
veloping this solution implies an individual description of
each damage for feature extraction, which is hard-working
and highly dependent on the images variety. A second
approach employs supervised deep learning. The usage of
deep neural networks is being progressively more acces-
sible to everyone, as online frameworks provide libraries
with complex network models architectures already built.
Also, transfer learning allows models to be pre-trained in
huge datasets, accomplishing optimization of the network
parameters, which later on can be �ne-tuned on a new
dataset. This results in a cut down of computational
time. However, the application of this solution requires
large datasets with ground truth labels, which represents
a time consuming e�ort. Moreover, the network training
is a process that takes huge amount of time and computa-
tional power. Nonetheless, this solution is less dependent
on images variety.

1.5 Objectives and Contributions

The main goal of this work is to explore automated vi-
sual inspection tools to detect and classify rotor blades
damages. Giving the dataset provided, it was required
to apply data preprocessing for overall coherence. As al-
ready referred in sec. 1.3, the new dataset was obtained
by coupling similar labels, removing data containing few
occurrences and relabelling of images damages.

There are still no solutions for this particular problem
case, so two approaches were considered, tested and com-
pared. The �rst approach corresponds to the development
of an algorithm using known computer visions techniques
to extract individually features of each damage and clas-
sify those based on regions properties, such as shapes or
density. Also, it is included a segmentation module, where
the blade is separated from its background, in an attempt
to ease the detection and classi�cation process. The sec-
ond approach uses an existing deep neural network, which
has been previously trained in a large dataset. By means
of transfer learning the parameters are �ne tuned for the
new dataset.

1.6 Outline

This work presents a total of seven sections, including
the current one, which already addressed the motivation,
along with the problem formulation and proposed solu-
tions. Sec. 2 contains a theoretical review of computer
vision techniques required to develop the �rst solution pro-
posed. Sec. 3 focuses on the theoretical foundations of the
second solution. It starts with an introduction to arti�-
cial intelligence and deep learning concepts, followed by a
choice of the model implemented, which is then described
through the remaining of the section. Sec.4 describes and
divides the dataset used in the implementations. Sec. 5
the implementation of the proposed solutions, as well as
the results obtained with the training dataset. In sec.
6, both solutions are tested and compared for the same
dataset. Sec. 7 �nishes this document with conclusions
and achievements concerning the objectives de�ned in the
previous section. Additionally, suggestions for future work
are also included.

2 Computer Vision Background

The literature review shows that is possible to detect
damages in images using only classic computer vision tech-
niques. For instance, in [16] a simple algorithm for cracks
detection in high-speed steel bar in coil was developed.
Also, more complex algorithms, as in [14], exploited the
detection of di�erent damages in tiles. However, none of
the previous cases presents noisy background as the tur-
bine blades images. To overcome this issue, a preprocess-
ing algorithm based on edges detection and hough trans-
form to remove the background is proposed. Having the
blade foreground de�ned, a combination of morphological
operations, edges detection and thresholds are applied to
get the RoIs. Finally, the RoIs are classi�ed based on blob
analysis, such as size, shape, density and others.

2.1 Spatial Filtering

Spatial �ltering is a technique to enhance or remove
features of an image, by convolving a �lter through it. A
�lter is a matrix element, F , with dimensions w × h × d,
being w the matrix width, h the height and d the number
of channels of the input. This element is convolved across
an image I, resulting in a new image I'. The output image
is computed as:

I ′(x, y) =

m∑
i=1+m

n∑
j=1+n

d∑
k=1

I(x+ i, y+ j, k) ·F (i, j, k) (1)

where m =
∣∣w
2

∣∣ and n =
∣∣h
2

∣∣.
2



2.2 Binarization

Binarization of grayscale images is an important step
towards segmentation and analysis of foreground objects.
Many characteristics might be used for the purpose, how-
ever the most common is the pixels intensity. Applying a
threshold to all pixels may be e�cient, yet de�ning man-
ually a threshold value that better splits foreground into
background is not straightforward. The best solution is
to apply an automatic threshold criteria, such as Otsu or
Adaptive threshold [13] [2].

2.2.1 Otsu Threshold

Otsu method �nds a global threshold value that min-
imizes the intra-class variance of foreground and back-
ground. In an iteratively fashion, Otsu method computes
di�erent threshold values, followed by an analysis of the
classes distribution. The distributions are analysed with
the histogram of the grayscale image. Each bin in the his-
togram corresponds to a di�erent gray value level and the
histogram measures the occurrences of those values in the
image.
By increasing the threshold for each bin value, the image

is divided into background for values bellow the threshold
and into foreground for values above it. Having the classes
established, the variance of each class is computed as:

σ2 =

∑
(vi − µ)2ni∑

ni
(2)

where vi and ni are the value and number of pixels of
level i, respectively. Following, the weight of each class,

w =
∑
ni
N , is calculated, where N is the total number

of pixels in the image. The intraclass variance is obtained
from an weighted arithmetic mean of both classes variance,
σ2
global = w0 · σ2

0 + w1 · σ2
1 .

2.2.2 Adaptive Threshold

Adaptive threshold technique computes a threshold for
each pixel, based on the local mean intensity of the neigh-
bourhood around it. For a given pixel, p, with a neigh-
bourhood N , the local threshold is applied as:

p∗ =

{
0 if p < mean(N) · s
1 otherwise

(3)

where s is the sensitivity parameter in the range [0 1].
Higher values of sensitivity will threshold more pixels as
foreground.

2.3 Morphological Operations

This work uses as baseline dilation and erosion morpho-
logical operations. As the names suggest, these operations
dilate and erode the foreground pixels using a structuring
element. This can be handy to connect or disconnect fore-
ground objects, as well as removing small objects if used
in the right sequence. For this last case one requires an
opening operation, where the image is eroded in such way
that small objects disappear and then is dilated to resize
all objects to their original shape. If the sequence order is
inverted the operation is called closing.
When dealing with dilation, the structure element ori-

gin is passed through each target pixel location and the

following condition yields: the target pixel is set to fore-
ground if any of the structuring element coincides with
a foreground pixel. Regarding the erosion, the condition
yields: the target pixel is set to background if any of the
structuring element coincides with a foreground pixel, ex-
cept in the case of all the structuring elements coinciding
with foreground pixels, which the target pixel is left un-
touched.

2.4 Canny Edge Detection

Canny edge detection, introduced in [3], is a multi step
algorithm to detect edges in gray scale images. It starts by
reducing the image noise with the application of a gaussian
�lter. Then, for each pixel the gradient magnitude is com-
puted. Edges are most likely to contain strong gradient
magnitudes. Following it, a Non-Maximum Suppression
(NMS) is applied to thin out the edges. Finally, hysteresis
threshold is performed to the gradients magnitudes.

2.4.1 Gaussian Filter

The gaussian �lter, built from the bivariate gaussian
distribution, is de�ned as:

G(x, y) =
1

2πσ2
e−

1
2 (
x2+y2

σ2
) (4)

where σ is the standard deviation. Since the gaussian
distribution is continuous, the kernel values are approxi-
mations of it.

2.4.2 Gradient Computation

In image processing it is good practice to use a cen-
tral di�erence derivative, which can be translated to a lin-
ear �lter, [-1 0 1]. The gaussian gradient �lter, ∇G =
(∂G∂x ,

∂G
∂y ), is the output of convolving derivative �lters

through a gaussian �lter. After convolving this gradient
�lter and obtaining the partial derivatives, gx and gy, the
gradient magnitude and direction are calculated for each
pixel as:

|g| =
√
(gx)2 + (gy)2 (5)

∠g = arctan(
gy
gx

) (6)

2.4.3 Non-maximum Suppression

For a given edge point, NMS investigates pixels in the
gradient direction neighbourhood and removes those who
present smaller gradient magnitude than the current ref-
erence pixel.
For a given pixel, q, the gradient direction is propagated

in both forward and backwards directions, obtaining the
closest points in the gradient direction, r and q. Having
this points de�ned, the pixel q is considered an edge if its
magnitude is bigger than both r and p. For more details
on this type of non-maximum suppression, recall to [7].

2.4.4 Hysteresis Threshold

In hysteresis threshold, upper and lower thresholds are
considered. From the thinned out gradient, any value be-
low the lower threshold is set to 0, while values above
the upper threshold are set to 1 and labelled as strong

3



edges. Values that fall between both thresholds are weak
edges and are set to 1 if they are connected to a strong
edges. The hysteresis threshold outputs the �nal edges
from Canny algorithm in the shape of a binary image.

2.5 Hough Transform

Hough transform was �rstly presented in [9], however
the popular algorithm was only establish a few years later,
in [5]. It is an algorithm designed to detect lines, circles
and other curves, knowing their parametric equations.

2.5.1 Lines in Hough Space

A line can be de�ned in parameter space with the polar
equation:

ρ = x · cos(θ) + y · sin(θ) (7)

where (ρ, θ) are the variables, representing the distance to
origin and the angle of the line, respectively. A noticeable
property of hough transform is that lines become points
in parameter space and points become sinusoidal waves,
thus if two points belong to a line in image space, their
representation in parameter space will intersect at a point
(ρ, θ), which corresponds to the parameters of the line.
This is the foundation of hough transform. By observing
the parameter space, points with high intersections density
are more probable of representing true lines.

2.5.2 Circles in Hough Space

For circles the Hough transform follows the same prin-
ciple as lines, but with minor changes. A circle in image
space can be described by the polar equations:

x = a+R · cos(θ)
y = b+R · sin(θ)

(8)

where (a, b) are the circles center coordinates and R is the
radius. Considering a constant radius, R, the transforma-
tion of points in image to parameter space origins circles.
Points with higher accumulated votes are more probable
of representing true circles center (a, b).

Nevertheless, in real implementations the radius may
be unknown, hence it can not be consider a constant. To
include a variant radius in the algorithm, it is necessary
to extend the parameter space in the R direction. This
means a point in image space will result in a conic surface.
In this manner, votes are accumulated for interceptions of
conic surfaces.

2.6 Clustering

With clustering algorithms one can group data points
into clusters based on speci�c characteristics, such as sim-
ilarity between points. For instance, a classic K-means
clustering method [12] uses only the centroids distance as
similarity, but other metrics may be used, as in the case
of Density-Based Spatial Clustering of Applications with
Noise (DBSCAN) [6], which clusters points in high density
neighborhoods. Additionally, more elaborated versions of
K-means can segment images into similar regions based
on distance and color of pixels, such as the Simple Linear
Iterative Clustering (SLIC) algorithm [1].

2.6.1 SLIC

SLIC algorithm clusters images into approximately
equally-sized regions based on the CIELAB color space
and Euclidean distances similarity in (x, y) plane. Hav-
ing this said, the cluster centers, Ck = [lk, ak, bk, xk, yk],
where the �rst 3 variables are the values of CIELAB color
space, are initialized by a grid of equally spaced intervals.
The space between cluster centers depends on the desired
number of clusters, K, and on the total number of pixels
in the image, N . As for the distance metric, D , SLIC uses
a linear combination of CIELAB color space and euclidean
distances, dlab and dxy, given as follow:

D = dlab +
m

S
dxy (9)

where m is the compactness of clusters and regulates the
emphasis that SLIC should give to the (x, y) plane distance
when computing the distance metric. Both dlab and dxy
are computed as euclidean distances:

dlab =
√
(lk − li)2 + (ak − ai)2 + (bk − bi)2 (10)

dxy =
√

(xk − xi)2 + (yk − yi)2 (11)

3 Deep Learning Background

The rising of DNNS in computer vision �eld was more
noticeable since the launch of Imagenet Large Scale Visual
Recognition Challenge (ILSVRC), in 2010. As this inno-
vative competition got prestige, many machine learning
researchers designed DNNs with peculiar architectures,
such as Single Shot multibox Detector(SSD), You Only
Look Once (YOLO), R-FCN , R-CNN, Fast R-CNN and
Faster R-CNN. In [10] are presented comparisons between
these networks regarding di�erent parameters. When
fast processing time is required, for instance in real time
detections, networks with an architecture like SSD and
YOLO show good performances. However, the accuracy
of these two is overcome by slower models, like Faster R-
CNN. Considering processing time has less relevance, the
adopted model was a Faster R-CNN [15].
Concerning the feature extractor implemented in Faster

R-CNN, ResNet-101 and Inception ResNet v2 show close
results in overall mAP and accuracy, but the second one is
much more computational demanding than the �rst. This
last point was the main factor to choose ResNet-101 [8],
over the Inception ResNet v2.

3.1 Convolutional Neural Networks Architecture

A typical CNN is composed of three layers: convolu-
tional, pooling and fully-connected layer. Those are de-
scribed next.

3.1.1 Convolution Layer

Convolutional layers are responsible for generating ab-
stract representations of an input, to be fed into the fully-
connected layer, latter on. These representations, usually
referred as feature/activation maps, are obtained by con-
volving a stack of linear �lters on the input image. While
training a CNN, weights will be adjusted to minimize the
output error. In regard to the convolutional layer, these
weights are present in the �lter. The depth of a convo-
lutional layer is dictated by the number of �lters. If one

4



increases the depth, the model becomes more complex, as
the amount of weights and feature maps rises.

3.1.2 Pooling Layer

Pooling layers are used to extract the most relevant fea-
tures in the activation map. This application reduces the
dimensionality of the representation and, consequently,
the number of parameters needed. Furthermore, its ap-
plication results in a local translation and minor changes
invariance. Pooling can be implemented with di�erent
methods, but typically max pooling is chosen in many net-
works architectures. When the kernel is slid across the ac-
tivation maps, max pooling will extract the features with
highest score.

3.1.3 Fully-Connected Layers

Fully-connected layers are based in multi-layer percep-
tron models. Each layer is constituted by independent
neurons, i.e, there is no connections within a layer. There
are three types of layers: input, hidden and output layer.
Connections between the �rst two layers are associated
with a weight wij and from the last two with a weight
Wij . Also a bias ,b, is added to hidden and output layers.

A neurons input, zj , results from the dot product be-
tween the weight of the connection, wij and the output of
the previous layer x, plus a bias value, b:

zj(x) =
∑
i

wijxi + bj = wT · x+ b (12)

A neurons output, known as activation, is computed using
the logit, zj , and an activation function, f :

g(x) = f(z(x)) (13)

3.1.4 Transfer Learning

Transfer learning is accomplished as follows: �rstly, a
network is trained from scratch in a large source dataset,
obtaining a robust model. Secondly, having the pre-
trained model, the parameters are reused to initialize the
new network. It is common practice to retrain all the lay-
ers of the model.

3.2 Faster R-CNN

Faster R-CNN architecture brings together two main
modules. The �rst one, noted as Regional Proposal Net-
work (RPN), proposes RoIs with various scales and aspect
ratios. The second one, known as Fast R-CNN, used as
classi�er and box regressor for the RoIs. Both modules
contain a fully-connected layer, which has two sibling out-
put layers: a bounding box regression and a classi�cation
layer. The �rst is responsible for predicting the coordi-
nates of the bounding-box and the second to output the
probability of the predicted box containing an object and
of being background. To merge the two modules, a shar-
ing of convolutional feature maps is implemented. In this
way, Faster R-CNN learns to generate regional proposals
and to classify those, using the same feature maps.

Figure 1: Faster R-CNN, as a uni�ed network

3.3 Activation Functions

Activation functions have the purpose of giving the
model non-linearity, which is a requirement when work-
ing with complex tasks. In this work there are 3 varieties
of activation function: �rst one for the hidden units, a
second one for the classi�cation units, and a third for re-
gression units.

3.3.1 Hidden Layer

The most common function used in units from hidden
layer is the ReLU, which is expressed as:

f(x) = max(0, x) =

{
x if x ≥ 0
0 otherwise

(14)

3.3.2 Classi�cation Layer

In this work a softmax formulation was used. Softmax
is an activation function to obtain a normalized probabil-
ity of being each class. It is formulated by the following
equation:

pk = σ(y)k =
eyk∑n
i e

yi
, k = 1, 2, ..., n (15)

where k is the index of each class, n the total number of
classes, y the logits vector and p the vector with the prob-
ability of being each class, pk, also known as con�dence
score. Having this last vector, the desired output of the
classi�er is the class with higher probability.

3.3.3 Box Regression Layer

This layer receives three input vectors for each anchor:
A,G and d. The �rst vector is composed of the center co-
ordinates, the width and height of the proposed anchors,
The second one, similar to the previous one, but regard-
ing the ground-truth box, and the third one is a vector,
composed of logits, meaning each element is a linear func-
tion of the output from the last hidden layer. To obtain
the predicted ground-truth box, P , a regression function
formulation was used, as described by the following trans-
formations:

Px = Aw dx +Ax Pw = Aw edw

Py = Ah dy +Ay Ph = Ah e
dh (16)

3.4 Optimization

Optimization algorithms are responsible for minimizing
or maximizing an objective function, which depends on the
learnable parameters, and translates the models error. In
neural networks, the previous function is referred to as loss
function and the learnable parameters are the weights and
bias, which are updated at each iteration using gradient-
based algorithms. As these parameters are connected in
a cause-e�ect fashion, the algorithm is conjugated with
backpropagation.

5



3.4.1 Gradient Descent

Gradient descent is a learning rule used to minimize
the loss function by updating the models parameters in
the opposite direction of the loss gradient. The goal is to
take steps towards the direction of the downhill surface
generated by the loss function, until a local minimum is
reached.

Eq. (17) represents the learning rule used in this work.
The updated parameter, θt+1, will depend on the current
parameter value, θt, on the gradient of the loss function
with respect to that parameter, ∂L

∂θt
, on the learning rate,

η, responsible for controlling the size of step taken between
iterations, on the momentum term, α, which determines
how much of the previous momentum, vt will accumulate
in the new one, vt+1 and on a weight decay, λ, that avoids
over�tting of the model, by penalizing the update made
in parameters with high values.

θt+1 = θt + vt+1

vt+1 = vtα− η ∂L∂θt − ληθt
(17)

3.4.2 Loss Function

Faster R-CNN uses a multi-task loss, where the classi�-
cation and regression loss are coupled in a uni�ed formu-
lation. While the classi�cation output predictions, pPk , are
obtained by means of (15), the box regression optimiza-
tion is accomplished by means of normalized coordinates.
Arranging the transformations present in (16) to isolate
the linear functions, one obtains the normalization of four
coordinates. Denoting tG and tP as the normalized coordi-
nates of the ground truth and predicted box, respectively,
the following is obtained:

tPx = Px−Ax
Aw

tPy =
Py−Ay
Ah

tPw = log ( PwAw ) tPh = log ( PhAh )

tGx = Gx−Ax
Aw

tGy =
Gy−Ay
Ah

tGw = log (GwAw ) tGh = log (GhAh )

(18)
Having the inputs, p and t, established, the multi-task
loss, L(p, t), is formulated as follows:

L(p, t) =
1

M

M∑
m

Lcls(p
P
m, p

G
m)︸ ︷︷ ︸

(1)

+λ
1

R

M∑
m

pGmLreg(t
P
m, t

G
m)︸ ︷︷ ︸

(2)

(19)
Multi-task loss is accomplished by summing the classi�ca-
tion loss ( 19-1), with the box regression loss (19-2). The
variable m is the index of the anchor inside a mini-batch
of sizeM . Also, the loss is normalized by means ofM and
R, being R the total number of every possible anchor lo-
cation and aspect-ratio combination. At last, a balancing
parameter, λ, is introduced to control the weight of term
in (19-2).

Regarding the classi�cation loss formulation, Lcls, a log
loss is accomplished as:

Lcls(p
P
m, p

G
m) = −

N∑
n

pGm,n log(p
P
m,n) (20)

Concerning the box regression loss, Lreg, the following

formulation yields:

Lreg(t
P
m, t

G
m) =

∑
j∈{x,y,w,h}

smoothL1
(tPm,j − tGm,j) (21)

where smoothL1 is a robust loss function given as:

smoothL1
(x) =

{
0.5x2 if |x| < 1
|x| − 0.5 otherwise

(22)

3.4.3 Backpropagation

Gradient descent updates the models learnable parame-
ters in the opposite direction of the loss gradient, to mini-
mize it. The term ∂L

∂θt
in the learning rule established ( 17)

represents the sensitivity of the loss function, L, to small
changes to parameter, θ. As previously mention, the loss
function depends on the ground truth, and on the activa-
tion from the neuron of the last layer, al. Furthermore,
this activation depends on the weight, wl, on the bias,
bl, and on the activation of the neuron from the previous
layer, al−1. To compute how the weight a�ects the loss
function, chain rule should be applied as next:

∂L

∂wl
=
∂L

∂al
∂al

∂zl
∂zl

∂wl
=
∂L

∂al
σ′(zl) al−1 (23)

where the index l refers to the last layer of the network
and l− 1 to the precedent layer. The term ∂L

∂al
represents

the sensitivity of the neuron al to the loss function and zl

the input of neurons. The derivative of a neuron, al−1, is
computed with chain rule, similar to (23).

4 Dataset

The dataset was already establish, however for im-
plementations purposes some preparation should be
made �rst, as well as announcement of existing con-
strains. Firstly, the dataset was split into three subsets:
train(65%), validation(15%) and test(20%). Table 2 dis-
plays the division of damages into these subsets.
Regarding the CVA development, a set of 10 images

was selected per damage from the training dataset, where
erosion was not included, since it cannot be distinguished
by strong features, rather, only by its spacial location in
the blade.

Train Validation Test CVA Test DLA
(65%) (15%) (11%) (20%)

Images 3724 940 633 1086
Erosion 2526 633 - 789
Peeling 875 220 271 271
Crack 570 142 178 178
Fungi 607 152 190 190
LS 296 75 89 89
LRD 477 121 146 146

Table 2: Dataset division for implementations

5 Wind Turbine's Blades Damage Detection and
Classi�cation Algorithms

5.1 Computer Vision Algorithm

The CVA solution was implemented inMATLAB 2017a
and is composed of the modules: main (�g. 2), feature ex-
traction (�g. 3), feature classi�cation ((�g. 4, 5, 7, 8 and

6



Figure 2: CVA: Main module

9)), segmentation (�g. 6) and NMS. The main module
manages all the detection processes. First, it performs
image acquisition and then it handles the calling of the
remaining modules. Each damage can be identi�ed by
the describers: peeling has strong edges, dark area and
low spacial density; fungi has strong edges, dark area and
high spacial density; crack has strong edges and high ec-
centricity; Lightning Strike (LS) has a dark and large area;
Lightning Receptor Damaged (LRD) has circular shape
with less than 2 small circles inside or 1 large circle inside
or strong edges in the surrounding area.

Figure 3: Feature Extraction module

Figure 4: Fungi and peeling classi�cation module

Figure 5: Crack classi�cation module

Figure 6: Segmentation module

Figure 7: LRD classi�cation module

7



Figure 8: Start A from LRD classi�cation module

Figure 9: LS classi�cation module

5.1.1 Non-Maximum Suppression

Since each damage methodology did not take into con-
sideration others damages, it is possible for those to mis-
lead the CVA for incorrect or redundant detections. In
that sense, a non-maximum suppression was applied. The
following conditions and consequent actions, were consid-
ered su�cient enough to improve the precision, while not
ruining recall: Equal label + IoUmin = 1 =⇒ smaller
area is fully within the biggest one. Remove small area;
Equal label + 1

3 < IoUmin < 1 =⇒ merge both bound-
ing boxes to cover all the union area; LS vs peeling/crack
+ IoUmin > 1

3 =⇒ remove peeling/crack; LRD vs
peeling/crack +IoUmin >

1
3 =⇒ remove peeling/crack;

Crack vs peeling + IoUmin >
1
3 =⇒ remove peeling.

5.1.2 Results

In order to validate this solution, the CVA was ran for
the training dataset already described in section 4. Table
3 shows the recall and precision of each damage using an
IoU of 1

3 (for more details on the metrics used, recall to the
full version of this work). Moreover, it is also displayed the
results obtained without using NMS. First, observing the
recall values, the peeling presents the lowest value, which
translates a poor detection of the ground truth cases. On
the other hand, the remaining damages recall show that
at least half of the ground truths were detected, except
for the LS case, which detected correctly all the ground
truth cases. The application of NMS improved slightly the
precision of peeling, crack and LS damages, while main-
taining the recall values. Nonetheless, the peeling preci-
sion is still pretty low, when compared to other damages,
which means the algorithm is producing a large amount
of false positives predictions. To understand these results
and �nd the algorithm �aws, one should visually analyse
the results.

Damage type
Recall(%) Precision(%)

No NMS NMS No NMS NMS
Peeling 22.22 22.22 2.21 4
Crack 51.85 51.85 18.42 22.95
Fungi 56.25 56.25 45 45
LS 100 100 31.25 43.48
LRD 50 50 62.50 62.50

Table 3: Average precision for test dataset

5.2 Deep Learning Algorithm

This solution was implemented in TensorFlow, using a
high-level Application Programming Interface (API).

5.2.1 Hyperparameters Selection

The hyperparameters were reused from the pre-training
process. Knowing these hyperparameters achieved state-
of-art results in the COCO dataset, the chances of result-
ing in the new dataset are huge. Some hyperparameters
were already established, while others were not. Table 4
summarizes all hyperparameters.

5.2.2 Input Resizing

Faster R-CNN has the peculiarity of working in datasets
composed of images with di�erent sizes. To do it, Faster
R-CNN resizes images so that the shorter side has a max-
imum of 600 pixels, while maintaining, if possible, the as-
pect ratio. Also, the longest side is restricted to a maxi-
mum of 1024 pixels.

5.2.3 Data augmentation

During the training stage, three operations for data aug-
mentation were randomly applied: horizontal �ip, bright-
ness adjustment and constract adjustment. The combi-
nation of these operations decreases the chances of Faster
R-CNN over�tting with the training dataset.

5.2.4 Results

The training process was set to a total of 300K steps,
during which the validation dataset was evaluated at every
10K steps. Concerning the transfer learning process, no
layers were frozen during training.
The loss was stored in memory every 100 steps and is

displayed in �gure 10a. A smoothed loss was also com-
puted, to better visualize the decrease in loss values. Even
though the loss presents many peak �uctuations, the mag-
nitude and frequency decrease as the training evolves. Re-
garding �gure 10a, since the loss globally decreases, it is
conclusive that, while training, the model learned how to
adapt to the training dataset. Figure 10b gathers the mAP
of the evaluations performed during training, in the range
50K to 300K steps.
In case the model over�tted with the training dataset,

the validation mAP would decrease in a conclusive way,
but that is not the case. Instead, it is observed small vari-
ations of the mAP. Nonetheless, the model seems to per-
form better with the validation dataset before overpassing
80K steps, which could mean the model is over�tting with
the training dataset after those steps (since the loss con-
tinues to decrease). For this reason the model trained for
80K steps was selected for later testing.

(a) (b)

Figure 10: (a) - Loss value every 100 training step, (b) -
Evalutation of validation dataset every 10k steps.

8



Hyperparameters

New layers weight initialization zero-mean Gaussian distribution with standard deviation 0.01
Hidden Layer: activation function ReLU
Classi�cation Layer: activation function Softmax
Regression Layer: activation function Regression
Gradient Descent with Backpropagation learning rate η: 0.0003, momentum α: 0.9, mini-batch size M:

256, balancing parameter λ: 10

Table 4: Hyperparameters of Faster R-CNN, as in the original paper [15]

6 Analysis and Comparison of Results
6.1 CVA Testing Results

The CVA solution was run for the test dataset de�ned
in sec. 4. Comparing these results with the ones obtained
with the training dataset (table 3), the algorithm per-
formed worst for the test dataset. This could be explained
knowing the CVA was built on few images, relatively to
the test dataset size. In that sense, even though the cal-
ibrated parameters showed feasible results during the de-
velopment, the same can not be ensured for testing. The
fungi algorithm seems to be the more robust, presenting
the lowest performance drops, when comparing the devel-
opment stage with the test. On the other hand, the LS
algorithm, which obtained a 100% recall and 43.48% pre-
cision on the development stage, dropped signi�cantly its
performance. Concerning the peeling and crack damages,
the bad results can be related to a lack of generalization
in the algorithms. Peeling and cracks have the most irreg-
ular shapes and sizes, so the usage of classical computer
vision techniques is not enough to ensure appropriate re-
sults. The LRD class achieved relatively good results, yet
it should be considered that all datasets presented few oc-
currences of Lightning receptors in good conditions. This
means the results may not be conclusive, as the algorithm
could be detecting any lightning receptor, instead of catch-
ing damaged ones.

Damage type Recall(%) Precision(%)

Peeling 15.13 2.66
Crack 26.14 8.30
Fungi 44.74 38.46
LS 23.60 6.86
LRD 36.99 41.86

Table 5: CVA performance for test dataset

6.1.1 DLA Testing Results

The model proposed in section 5.2.4 was evaluated using
the test dataset described in section 4, and was set to out-
put 300 detections, choosing those with higher con�dence
score. Table 6 presents the Average Precision per class,
while table 7 shows the mean Average Precision (mAP)
for the test and validation datasets. Once again, the LRD
stands out for having the highest result. As explained
in section 4, the class erosion was only evaluated for the
deep learning solution, as an attempt to con�rm whether
the network can distinguish a class which depends on the
natural context where it is inserted. With a look at the av-
erage precision per class, the erosion presents a good value
of Average Precision (AP), meaning the previous hypothe-
sis is con�rmed. Nevertheless, this class contains the most

amount of occurrences, which could be bene�cial in the
training stage, achieving better results. Regarding table
7, the performance of the testing stage was worst than the
validation performed during training (see �g. 10b).

Damage type Average Precision(%)

Erosion 70.34
Peeling 62.92
Crack 72.57
Fungi 68.94
LS 66.99
LRD 93.47

Table 6: Average precision for test dataset, for the DLA

Validation Test

mAP(%) 80.54 72.54

Table 7: Comparison between mAP in validation and test
datasets, for the DLA

6.2 Performance Comparison

The comparison of the solutions proposed cannot be
done directly using mAP, since the CVA does not output
a con�dence score. It was established the following com-
parison: precision and recall are computed for CVA and
checked whether the corresponding point would fall inside
or outside the Faster R-CNN average precision area. In
case it falls inside, the CVA is considered to have lower
performance. Figure 11 demonstrates exactly this com-
parison. The results conclude that the CVA solution is
outperformed by Faster R-CNN. Both peeling, crack and
LS detections from CVA show really low precision values.
The classes fungi and LRD show slightly larger values of
recall and precision, but are also outperformed by Faster
R-CNN.

7 Conclusions

Automatic visual inspection of wind turbines blades is
not a trivial task. First, concerning the damage classi�ca-
tion, there is still no standard labelling system, as it will
depend on the inspector, country and training. Second,
the photographs themselves contain external factors such
as illumination, which can not be controlled and will in-
�uence the results. In sec. 5.1, limitations were found in
the development of the �rst solution. Besides the external
factors already referred, the manual calibration of param-
eters was a large workload and showed good results in a
design stage, even though during testing stage its perfor-
mance dropped.In sec. 5.2 transfer learning was applied
in a Faster R-CNN with a Resnet-101 feature extractor.
The hyperparameters were reused from the pre-training

9



Figure 11: CVA and DLA performance comparison

process. In seek for better results, the hyperparameters
sensitivity should have been evaluated, but that would de-
mand a larger amount of computation time. Since the loss
converged to zero and the validation performance stag-
nated, its conclusive the model adapted to the training
dataset, while not over�tting with it. The model trained
for 80K steps was chosen for testing, since it had the high-
est mAP in the validation. The testing con�rmed that
erosion can be detected in the same manner as other dam-
ages, meaning the model learned the spatial context of
damages. As the LRD class achieved a surprisingly high
AP, it is presumed that this was caused by the lack of
examples of lightning receptors in good conditions. Even
though data augmentation was performed during training,
the dataset should be larger to improve the results. In
sec. 6, the solutions were compared for the same dataset,
which made conclusive that Faster R-CNN performance
was much higher than the CVA solution, achieving better
generalization in all the classes.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
and S. Süsstrunk. Slic superpixels compared to
state-of-the-art superpixel methods. IEEE Transac-

tions on Pattern Analysis and Machine Intelligence,
34(11):2274�2282, 2012. 4

[2] D. Bradley and G. Roth. Adaptive thresholding us-
ing the integral image. Journal of graphics tools,
12(2):13�21, 2007. 3

[3] J. Canny. A computational approach to edge detec-
tion. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 6:679�698, 1986. 3

[4] T. Chady, R. Sikora, P. Lopato, G. Psuj, B. Szy-
manik, K. Balasubramaniam, and P. Rajagopal.
Wind turbine blades inspection techniques. Organ,
5:16, 2016. 1

[5] R. O. Duda and P. E. Hart. Use of the hough transfor-
mation to detect lines and curves in pictures. Techni-
cal report, Sri International Menlo Park Ca Arti�cial
Intelligence Center, 1971. 4

[6] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al.
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96,
pages 226�231, 1996. 4

[7] D. A. Forsyth and J. Ponce. Computer vision: a

modern approach. Prentice Hall Professional Techni-
cal Reference, 2002. 3

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proceedings of the

IEEE Conference on Computer Vision and Pattern

Recognition, pages 770�778, 2016. 4

[9] P. V. Hough. Method and means for recognizing com-
plex patterns, Dec. 18 1962. US Patent 3,069,654. 4

[10] J. Huang, V. Rathod, C. Sun, M. Zhu, A. Korat-
tikara, A. Fathi, I. Fischer, Z. Wojna, Y. Song,
S. Guadarrama, et al. Speed/accuracy trade-o�s for
modern convolutional object detectors (2016). arXiv
preprint arXiv:1611.10012. 4

[11] IRENA. Renewable energy statistics 2019 - electricity
generation. https://www.irena.org/Statistics/

View-Data-by-Topic/Capacity-and-Generation/

Statistics-Time-Series, 2020. 1

[12] J. MacQueen et al. Some methods for classi�cation
and analysis of multivariate observations. In Proceed-

ings of the Fifth Berkeley Symposium on Mathemat-

ical Statistics and Probability, volume 1, pages 281�
297. Oakland, CA, USA, 1967. 4

[13] N. Otsu. A threshold selection method from gray-
level histograms. IEEE Transactions on Systems,

Man, and Cybernetics, 9(1):62�66, 1979. 3

[14] G. Rahaman, M. Hossain, et al. Automatic de-
fect detection and classi�cation technique from im-
age: a special case using ceramic tiles. arXiv preprint
arXiv:0906.3770, 2009. 2

[15] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn:
Towards real-time object detection with region pro-
posal networks. In Advances in Neural Information

Processing Systems, pages 91�99, 2015. 4, 9

[16] J. P. Yun, Y. Park, B. Seo, S. W. Kim, S. H. Choi,
C. H. Park, H. M. Bae, and H. W. Hwang. Devel-
opment of real-time defect detection algorithm for
high-speed steel bar in coil (bic). In 2006 SICE-

ICASE International Joint Conference, pages 2495�
2498. IEEE, 2006. 2

10

https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series
https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series
https://www.irena.org/Statistics/View-Data-by-Topic/Capacity-and-Generation/Statistics-Time-Series

